Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.574
Filtrar
1.
Nature ; 625(7996): 788-796, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029793

RESUMO

The expansion of the neocortex, a hallmark of mammalian evolution1,2, was accompanied by an increase in cerebellar neuron numbers3. However, little is known about the evolution of the cellular programmes underlying the development of the cerebellum in mammals. In this study we generated single-nucleus RNA-sequencing data for around 400,000 cells to trace the development of the cerebellum from early neurogenesis to adulthood in human, mouse and the marsupial opossum. We established a consensus classification of the cellular diversity in the developing mammalian cerebellum and validated it by spatial mapping in the fetal human cerebellum. Our cross-species analyses revealed largely conserved developmental dynamics of cell-type generation, except for Purkinje cells, for which we observed an expansion of early-born subtypes in the human lineage. Global transcriptome profiles, conserved cell-state markers and gene-expression trajectories across neuronal differentiation show that cerebellar cell-type-defining programmes have been overall preserved for at least 160 million years. However, we also identified many orthologous genes that gained or lost expression in cerebellar neural cell types in one of the species or evolved new expression trajectories during neuronal differentiation, indicating widespread gene repurposing at the cell-type level. In sum, our study unveils shared and lineage-specific gene-expression programmes governing the development of cerebellar cells and expands our understanding of mammalian brain evolution.


Assuntos
Cerebelo , Evolução Molecular , Mamíferos , Neurogênese , Animais , Humanos , Camundongos , Linhagem da Célula/genética , Cerebelo/citologia , Cerebelo/embriologia , Cerebelo/crescimento & desenvolvimento , Feto/citologia , Feto/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Gambás/embriologia , Gambás/crescimento & desenvolvimento , Células de Purkinje/citologia , Células de Purkinje/metabolismo , Análise da Expressão Gênica de Célula Única , Especificidade da Espécie , Transcriptoma , Mamíferos/embriologia , Mamíferos/crescimento & desenvolvimento
2.
Nature ; 624(7991): 403-414, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092914

RESUMO

The brain controls nearly all bodily functions via spinal projecting neurons (SPNs) that carry command signals from the brain to the spinal cord. However, a comprehensive molecular characterization of brain-wide SPNs is still lacking. Here we transcriptionally profiled a total of 65,002 SPNs, identified 76 region-specific SPN types, and mapped these types into a companion atlas of the whole mouse brain1. This taxonomy reveals a three-component organization of SPNs: (1) molecularly homogeneous excitatory SPNs from the cortex, red nucleus and cerebellum with somatotopic spinal terminations suitable for point-to-point communication; (2) heterogeneous populations in the reticular formation with broad spinal termination patterns, suitable for relaying commands related to the activities of the entire spinal cord; and (3) modulatory neurons expressing slow-acting neurotransmitters and/or neuropeptides in the hypothalamus, midbrain and reticular formation for 'gain setting' of brain-spinal signals. In addition, this atlas revealed a LIM homeobox transcription factor code that parcellates the reticulospinal neurons into five molecularly distinct and spatially segregated populations. Finally, we found transcriptional signatures of a subset of SPNs with large soma size and correlated these with fast-firing electrophysiological properties. Together, this study establishes a comprehensive taxonomy of brain-wide SPNs and provides insight into the functional organization of SPNs in mediating brain control of bodily functions.


Assuntos
Encéfalo , Perfilação da Expressão Gênica , Vias Neurais , Neurônios , Medula Espinal , Animais , Camundongos , Hipotálamo , Neurônios/metabolismo , Neuropeptídeos , Medula Espinal/citologia , Medula Espinal/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Neurotransmissores , Mesencéfalo/citologia , Formação Reticular/citologia , Eletrofisiologia , Cerebelo/citologia , Córtex Cerebral/citologia
3.
Science ; 381(6662): 1112-1119, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37676945

RESUMO

The cerebellum contains most of the neurons in the human brain and exhibits distinctive modes of development and aging. In this work, by developing our single-cell three-dimensional (3D) genome assay-diploid chromosome conformation capture, or Dip-C-into population-scale (Pop-C) and virus-enriched (vDip-C) modes, we resolved the first 3D genome structures of single cerebellar cells, created life-spanning 3D genome atlases for both humans and mice, and jointly measured transcriptome and chromatin accessibility during development. We found that although the transcriptome and chromatin accessibility of cerebellar granule neurons mature in early postnatal life, 3D genome architecture gradually remodels throughout life, establishing ultra-long-range intrachromosomal contacts and specific interchromosomal contacts that are rarely seen in neurons. These results reveal unexpected evolutionarily conserved molecular processes that underlie distinctive features of neural development and aging across the mammalian life span.


Assuntos
Senescência Celular , Cerebelo , Montagem e Desmontagem da Cromatina , Genoma , Neurônios , Animais , Humanos , Camundongos , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Neurônios/metabolismo , Imageamento Tridimensional , Análise de Célula Única , Atlas como Assunto
4.
Int. j. morphol ; 41(3): 825-830, jun. 2023. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1514291

RESUMO

SUMMARY: The cerebellum is a crucial area of the hindbrain that plays an essential role in balancing, excitement control, and subtle and accurate functions. Studies have shown that long-term use of D-galactose in mice, as with the symptoms of aging, causes morphological and functional disorders in the brain. This study was performed to evaluate the changes in the cerebellum cortex tissue and the measurement of reactive oxygen species (ROS) in the cerebellum following the induction of aging in mice by D-galactose. Accordingly, subjects were randomly assigned into two groups: Normal saline group and Aging group (D-galactose). To create an aging model, D- galactose, and saline solution (sodium chloride 0.9 %) were used. After completing the preparation and passage of the tissue, the cerebellum specimens were cut in 5 microns thickness and then stained with hematoxylin-eosin stain and finally examined under a Nikon microscope. Quantitative variables were analyzed by SPSS software using T-test. In the observations of cerebellum tissue samples, in the aged induced group by D-galactose, the most changes were observed in the Neuron purkinjense (Purkinje cells) layer. In the observations of the cerebellum tissue samples of aging group induced by D-galactose, the most changes were observed in the Neuron purkinjense, and the arrangement and placement of these cells were disorientated. The nucleus positioning was not central, and the Neuron purkinjense induced by aging were seen in different morphological forms. Necrosis, Chromatolysis, and Pyknosis were found. Based on the results, D-galactose (induction of aging) causes pathological changes in the cerebellar cortex, especially in the Neuron purkinjense layer.


El cerebelo es un área crucial del rombencéfalo que desempeña un papel esencial en el equilibrio, el control de la excitación y las funciones sutiles y precisas. Los estudios han demostrado que el uso a largo plazo de D-galactosa en ratones, al igual que con los síntomas del envejecimiento, provoca trastornos morfológicos y funcionales en el cerebro. Este estudio se realizó para evaluar los cambios en el tejido de la corteza del cerebelo y la medición de especies reactivas de oxígeno (ROS) en el cerebelo luego de la inducción del envejecimiento en ratones por D-galactosa. En consecuencia, los sujetos fueron asignados aleatoriamente a dos grupos: grupo de solución salina normal y grupo de envejecimiento (D-galactosa). Para crear un modelo de envejecimiento, se utilizaron D-galactosa y solución salina (cloruro de sodio al 0,9 %). Después de completar la preparación y el paso del tejido, las muestras de cerebelo se cortaron en un grosor de 5 µm y luego se tiñeron con tinción de hematoxilina-eosina y finalmente se examinaron bajo un microscopio Nikon. Las variables cuantitativas se analizaron mediante el software SPSS utilizando la prueba T. En las observaciones de muestras de tejido de cerebelo, en el grupo envejecido inducido por D-galactosa, la mayoría de los cambios se observaron en la capa de neuronas purkinjenses (células de Purkinje). En las observaciones de las muestras de tejido del cerebelo del grupo de envejecimiento inducidas por D-galactosa, la mayoría de los cambios se observaron en las neuronas purkinjenses, y la disposición y ubicación de estas células estaban desorientadas. El posicionamiento del núcleo no era central y las neuronas purkinjenses inducidas por el envejecimiento se observaban en diferentes formas morfológicas. Se encontró necrosis, cromatólisis y picnosis. Según los resultados, la D-galactosa (inducción del envejecimiento) provoca cambios patológicos en la corteza cerebelosa, especialmente en la capa de neuronas purkinjenses.


Assuntos
Animais , Masculino , Camundongos , Envelhecimento , Cerebelo/patologia , Galactose/administração & dosagem , Células de Purkinje , Cerebelo/citologia , Espécies Reativas de Oxigênio , Modelos Animais , Camundongos Endogâmicos BALB C
5.
FEBS J ; 290(11): 2786-2804, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35262281

RESUMO

The study of cerebellar development has been at the forefront of neuroscience since the pioneering work of Wilhelm His Sr., Santiago Ramón y Cajal and many others since the 19th century. They laid the foundation to identify the circuitry of the cerebellum, already revealing its stereotypic three-layered cortex and discerning several of its neuronal components. Their work was fundamental in the acceptance of the neuron doctrine, which acknowledges the key role of individual neurons in forming the basic units of the nervous system. Increasing evidence shows that the cerebellum performs a variety of homeostatic and higher order neuronal functions beyond the mere control of motor behaviour. Over the last three decades, many studies have revealed the molecular machinery that regulates distinct aspects of cerebellar development, from the establishment of a cerebellar anlage in the posterior brain to the identification of cerebellar neuron diversity at the single cell level. In this review, we focus on summarizing our current knowledge on early cerebellar development with a particular emphasis on the molecular determinants that secure neuron specification and contribute to the diversity of cerebellar neurons.


Assuntos
Cerebelo , Neurônios , Animais , Humanos , Cerebelo/anatomia & histologia , Cerebelo/citologia , Cerebelo/embriologia , Biologia do Desenvolvimento , Neurônios GABAérgicos/citologia , Homeostase , Neurônios/classificação , Neurônios/citologia , Neurônios/metabolismo , Neurociências , Análise de Célula Única
6.
Nature ; 612(7941): 787-794, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450980

RESUMO

Medulloblastoma (MB) is the most common malignant childhood brain tumour1,2, yet the origin of the most aggressive subgroup-3 form remains elusive, impeding development of effective targeted treatments. Previous analyses of mouse cerebella3-5 have not fully defined the compositional heterogeneity of MBs. Here we undertook single-cell profiling of freshly isolated human fetal cerebella to establish a reference map delineating hierarchical cellular states in MBs. We identified a unique transitional cerebellar progenitor connecting neural stem cells to neuronal lineages in developing fetal cerebella. Intersectional analysis revealed that the transitional progenitors were enriched in aggressive MB subgroups, including group 3 and metastatic tumours. Single-cell multi-omics revealed underlying regulatory networks in the transitional progenitor populations, including transcriptional determinants HNRNPH1 and SOX11, which are correlated with clinical prognosis in group 3 MBs. Genomic and Hi-C profiling identified de novo long-range chromatin loops juxtaposing HNRNPH1/SOX11-targeted super-enhancers to cis-regulatory elements of MYC, an oncogenic driver for group 3 MBs. Targeting the transitional progenitor regulators inhibited MYC expression and MYC-driven group 3 MB growth. Our integrated single-cell atlases of human fetal cerebella and MBs show potential cell populations predisposed to transformation and regulatory circuitries underlying tumour cell states and oncogenesis, highlighting hitherto unrecognized transitional progenitor intermediates predictive of disease prognosis and potential therapeutic vulnerabilities.


Assuntos
Neoplasias Encefálicas , Transformação Celular Neoplásica , Feto , Meduloblastoma , Humanos , Neoplasias Encefálicas/patologia , Transformação Celular Neoplásica/patologia , Neoplasias Cerebelares/patologia , Cerebelo/citologia , Cerebelo/patologia , Feto/citologia , Feto/patologia , Meduloblastoma/patologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/patologia , Prognóstico
7.
Sci Rep ; 12(1): 12880, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896708

RESUMO

Human cerebellum consists of high density and complexity of neurons. Thus, it is challenging to differentiate cerebellar-like organoids with similar cellular markers and function to the human brain. Our previous study showed that the combination of retinoic acid (RA), Wingless/integrated (Wnt) activator, and Sonic Hedgehog (SHH) activator promotes cerebellar differentiation from human induced pluripotent stem cells (hiPSCs). This study examined phenotypic, metabolic, and biogenesis in early cerebellar development. Cerebellum spheroids were differentiated from human iPSK3 cells. During day 7-14, RA and Wnt activator CHIR99021 were used and SHH activator purmorphamine (PMR) was added later to promote ventralization. Gene expression for early cerebellar layer markers, metabolism, and extracellular vesicle (EV) biogenesis were characterized. Zinc-induced neurotoxicity was investigated as a proof-of-concept of neurotoxicity study. Flow cytometry results showed that there was no significant difference in NEPH3, PTF1A, OLIG2, and MATH1 protein expression between RCP (RA-CHIR-PMR) versus the control condition. However, the expression of cerebellar genes for the molecular layer (BHLE22), the granule cell layer (GABRB2, PAX6, TMEM266, KCNIP4), the Bergmann glial cells (QK1, DAO), and the Purkinje cell layer (ARHGEF33, KIT, MX1, MYH10, PPP1R17, SCGN) was significantly higher in the RCP condition than the control. The shift in metabolic pathways toward glycolysis was observed for RCP condition. The EV biogenesis marker expression was retained. Mild zinc-induced neurotoxicity may exist when zinc exposure exceeds 1.0 µM. RCP treatment can promote specific cerebellar-like differentiation from hiPSCs indicated by gene expression of early cerebellar markers and regionally enriched genes. The higher cerebellar marker expression is accompanied by the elevated glycolysis with the retained EV biogenesis. This study should advance the understanding of biomarkers during early cerebellar development for cerebellum organoid engineering and neurotoxicity study.


Assuntos
Cerebelo , Proteínas Hedgehog , Células-Tronco Pluripotentes Induzidas , Esferoides Celulares , Cerebelo/citologia , Proteínas Hedgehog/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/metabolismo , Esferoides Celulares/metabolismo , Tretinoína/metabolismo , Zinco/metabolismo
8.
Elife ; 112022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35156922

RESUMO

Although cerebellar alterations have been implicated in stress symptoms, the exact contribution of the cerebellum to stress symptoms remains to be elucidated. Here, we demonstrated the crucial role of cerebellar neurons projecting to the ventral tegmental area (VTA) in the development of chronic stress-induced behavioral alterations in mice. Chronic chemogenetic activation of inhibitory Purkinje cells in crus I suppressed c-Fos expression in the DN and an increase in immobility in the tail suspension test or forced swimming test, which were triggered by chronic stress application. The combination of adeno-associated virus-based circuit mapping and electrophysiological recording identified network connections from crus I to the VTA via the dentate nucleus (DN) of the deep cerebellar nuclei. Furthermore, chronic inhibition of specific neurons in the DN that project to the VTA prevented stressed mice from showing such depression-like behavior, whereas chronic activation of these neurons alone triggered behavioral changes that were comparable with the depression-like behaviors triggered by chronic stress application. Our results indicate that the VTA-projecting cerebellar neurons proactively regulate the development of depression-like behavior, raising the possibility that cerebellum may be an effective target for the prevention of depressive disorders in human.


Assuntos
Cerebelo/citologia , Depressão , Neurônios/metabolismo , Estresse Fisiológico , Área Tegmentar Ventral/fisiologia , Animais , Comportamento Animal , Feminino , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR
9.
J Biol Chem ; 298(3): 101712, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35150738

RESUMO

Alpha-tocopherol (vitamin E) is an essential nutrient that functions as a major lipid-soluble antioxidant in humans. The alpha-tocopherol transfer protein (TTP) binds α-tocopherol with high affinity and selectivity and regulates whole-body distribution of the vitamin. Heritable mutations in the TTPA gene result in familial vitamin E deficiency, elevated indices of oxidative stress, and progressive neurodegeneration that manifest primarily in spinocerebellar ataxia. Although the essential role of vitamin E in neurological health has been recognized for over 50 years, the mechanisms by which this essential nutrient is transported in the central nervous system are poorly understood. Here we found that, in the murine cerebellum, TTP is selectively expressed in glial fibrillary acidic protein-positive astrocytes, where it facilitates efflux of vitamin E to neighboring neurons. We also show that induction of oxidative stress enhances the transcription of the TtpA gene in cultured cerebellar astrocytes. Furthermore, secretion of vitamin E from astrocytes is mediated by an ABC-type transporter, and uptake of the vitamin into neurons involves the low-density lipoprotein receptor-related protein 1. Taken together, our data indicate that TTP-expressing astrocytes control the delivery of vitamin E from astrocytes to neurons, and that this process is homeostatically responsive to oxidative stress. These are the first observations that address the detailed molecular mechanisms of vitamin E transport in the central nervous system, and these results have important implications for understanding the molecular underpinnings of oxidative stress-related neurodegenerative diseases.


Assuntos
Astrócitos , Proteínas de Transporte , Cerebelo , Neurônios , Vitamina E , alfa-Tocoferol , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Proteínas de Transporte/metabolismo , Cerebelo/citologia , Cerebelo/metabolismo , Humanos , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Tocoferóis , Vitamina E/metabolismo , Vitaminas , alfa-Tocoferol/metabolismo
10.
J Integr Neurosci ; 21(1): 30, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164466

RESUMO

Apoptosis, autophagy and necrosis are the three main types of programmed cell death. One or more of these types of programmed cell death may take place in neurons leading to their death in various neurodegenerative disorders in humans. Purkinje neurons (PNs) are among the most highly vulnerable population of neurons to cell death in response to intrinsic hereditary diseases or extrinsic toxic, hypoxic, ischemic, and traumatic injury. In this review, we will describe the three main types of programmed cell death, including the molecular mechanisms and the sequence of events in each of them, and thus illustrating the intracellular proteins that mediate and regulate each of these types. Then, we will discuss the role of Ca2+ in PN function and increased vulnerability to cell death. Additionally, PN death will be described in animal models, namely lurcher mutant mouse and shaker mutant rat, in order to illustrate the potential therapeutic implications of programmed cell death in PNs by reviewing the previous studies that were carried out to interfere with the programmed cell death in an attempt to rescue PNs from death.


Assuntos
Apoptose , Autofagia , Cerebelo , Necrose , Doenças Neurodegenerativas , Células de Purkinje , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Cerebelo/citologia , Cerebelo/metabolismo , Cerebelo/patologia , Cerebelo/fisiopatologia , Humanos , Camundongos , Necrose/metabolismo , Necrose/patologia , Necrose/fisiopatologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Células de Purkinje/citologia , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Células de Purkinje/fisiologia , Ratos
11.
Elife ; 112022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076394

RESUMO

The resurgent component of the voltage-gated sodium current (INaR) is a depolarizing conductance, revealed on membrane hyperpolarizations following brief depolarizing voltage steps, which has been shown to contribute to regulating the firing properties of numerous neuronal cell types throughout the central and peripheral nervous systems. Although mediated by the same voltage-gated sodium (Nav) channels that underlie the transient and persistent Nav current components, the gating mechanisms that contribute to the generation of INaR remain unclear. Here, we characterized Nav currents in mouse cerebellar Purkinje neurons, and used tailored voltage-clamp protocols to define how the voltage and the duration of the initial membrane depolarization affect the amplitudes and kinetics of INaR. Using the acquired voltage-clamp data, we developed a novel Markov kinetic state model with parallel (fast and slow) inactivation pathways and, we show that this model reproduces the properties of the resurgent, as well as the transient and persistent, Nav currents recorded in (mouse) cerebellar Purkinje neurons. Based on the acquired experimental data and the simulations, we propose that resurgent Na+ influx occurs as a result of fast inactivating Nav channels transitioning into an open/conducting state on membrane hyperpolarization, and that the decay of INaR reflects the slow accumulation of recovered/opened Nav channels into a second, alternative and more slowly populated, inactivated state. Additional simulations reveal that extrinsic factors that affect the kinetics of fast or slow Nav channel inactivation and/or impact the relative distribution of Nav channels in the fast- and slow-inactivated states, such as the accessory Navß4 channel subunit, can modulate the amplitude of INaR.


Assuntos
Potenciais de Ação/fisiologia , Ativação do Canal Iônico , Células de Purkinje/metabolismo , Sódio/metabolismo , Subunidade beta-4 do Canal de Sódio Disparado por Voltagem/deficiência , Animais , Animais Recém-Nascidos , Cerebelo/citologia , Feminino , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Equilíbrio Postural/fisiologia , Subunidade beta-4 do Canal de Sódio Disparado por Voltagem/metabolismo
12.
Neurotoxicology ; 88: 196-207, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883095

RESUMO

Diphenylarsinic acid (DPAA) is a non-natural pentavalent organic arsenic and was detected in well water in Kamisu, Ibaraki, Japan in 2003. Individuals that had consumed this arsenic-contaminated water developed cerebellar symptoms such as myoclonus. We previously revealed that DPAA exposure in rats in vitro and in vivo specifically affected astrocytes rather than neurons among cerebellar cells. Here, we evaluated adverse effects of DPAA in cultured normal human cerebellar astrocytes (NHA), which were compared with those in normal rat cerebellar astrocytes (NRA) exposed to DPAA at 10 µM for 96 h, focusing on aberrant activation of astrocytes; increase in cell viability, activation of MAP kinases (ERK1/2, p38MAPK, and SAPK/JNK) and transcription factors (CREB, c-Jun, and c-Fos), upregulation of oxidative stress-responsive factors (Nrf2, HO-1, and Hsp70), and also hypersecretion of brain cytokines (MCP-1, adrenomedullin, FGF-2, CXCL1, and IL-6) as reported in NRA. While DPAA exposure at 10 µM for 96 h had little effect on NHA, a higher concentration (50 µM for 96 h) and longer exposure (10 µM for 288 h) induced similar aberrant activation. Moreover, exposure to DPAA at 50 µM for 96 h or 10 µM for 288 h in NHA induced hypersecretion of cytokines induced in DPAA-exposed NRA (MCP-1, adrenomedullin, FGF-2, CXCL1, and IL-6), and IL-8 besides into culture medium. These results suggested that aberrantly activated human astrocytes by DPAA exposure might play a pivotal role in the pathogenesis of cerebellar symptoms, affecting adjacent neurons, microglia, brain blood vessels, or astrocyte itself through these brain cytokines in human.


Assuntos
Arsenicais/efeitos adversos , Astrócitos/efeitos dos fármacos , Cerebelo/efeitos dos fármacos , Citocinas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Animais , Arsenicais/administração & dosagem , Astrócitos/metabolismo , Western Blotting , Cerebelo/citologia , Cerebelo/metabolismo , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Ratos , Ratos Wistar
13.
J Neurosci ; 42(4): 581-600, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34857649

RESUMO

Proprioception, the sense of limb and body position, generates a map of the body that is essential for proper motor control, yet we know little about precisely how neurons in proprioceptive pathways are wired. Defining the anatomy of secondary neurons in the spinal cord that integrate and relay proprioceptive and potentially cutaneous information from the periphery to the cerebellum is fundamental to understanding how proprioceptive circuits function. Here, we define the unique anatomic trajectories of long-range direct and indirect spinocerebellar pathways as well as local intersegmental spinal circuits using genetic tools in both male and female mice. We find that Clarke's column neurons, a major contributor to the direct spinocerebellar pathway, has mossy fiber terminals that diversify extensively in the cerebellar cortex with axons terminating bilaterally, but with no significant axon collaterals within the spinal cord, medulla, or cerebellar nuclei. By contrast, we find that two of the indirect pathways, the spino-lateral reticular nucleus and spino-olivary pathways, are in part, derived from cervical Atoh1-lineage neurons, whereas thoracolumbar Atoh1-lineage neurons project mostly locally within the spinal cord. Notably, while cervical and thoracolumbar Atoh1-lineage neurons connect locally with motor neurons, no Clarke's column to motor neuron connections were detected. Together, we define anatomic differences between long-range direct, indirect, and local proprioceptive subcircuits that likely mediate different components of proprioceptive-motor behaviors.SIGNIFICANCE STATEMENT We define the anatomy of long-range direct and indirect spinocerebellar pathways as well as local spinal proprioceptive circuits. We observe that mossy fiber axon terminals of Clarke's column neurons diversify proprioceptive information across granule cells in multiple lobules on both ipsilateral and contralateral sides, sending no significant collaterals within the spinal cord, medulla, or cerebellar nuclei. Strikingly, we find that cervical spinal cord Atoh1-lineage neurons form mainly the indirect spino-lateral reticular nucleus and spino-olivary tracts and thoracolumbar Atoh1-lineage neurons project locally within the spinal cord, whereas only a few Atoh1-lineage neurons form a direct spinocerebellar tract.


Assuntos
Cerebelo/fisiologia , Rede Nervosa/fisiologia , Propriocepção/fisiologia , Medula Espinal/fisiologia , Tratos Espinocerebelares/fisiologia , Animais , Animais Recém-Nascidos , Cerebelo/química , Cerebelo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/química , Rede Nervosa/citologia , Medula Espinal/química , Medula Espinal/citologia , Tratos Espinocerebelares/química , Tratos Espinocerebelares/citologia
14.
Exp Neurol ; 348: 113950, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34902356

RESUMO

Adult neurogenesis is well-described in the subventricular and subgranular zones of the mammalian brain. Recent observations that resident glia express stem cell markers in some areas of the brain not traditionally associated with neurogenesis hint to a possible role in tissue repair. The Bergmann glia (BG) population in the cerebellum displays markers and in vitro features associated with neural stem cells (NSC), however the physiological relevance of this phenotypic overlap remains unclear in the absence of established in vivo evidence of tissue regeneration in the adult cerebellum. Here, this BG population was analysed in the adult cerebellum of different species and showed conservation of NSC-associated marker expression including Sox1, Sox2 and Sox9, in chick, primate and mouse cerebellum tissue. NSC-like cells isolated from adult mouse cerebellum showed slower growth when compared to lateral ventricle NSC, as well as differences upon differentiation. In a mouse model of cerebellar degeneration, progressive Purkinje cell loss was linked to cerebellar cortex disorganisation and a significant increase in Sox-positive cells compared to matching controls. These results show that this Sox-positive population responds to cerebellar tissue disruption, suggesting it may represent a mobilisable cellular resource for targeted strategies to promote tissue repair.


Assuntos
Diferenciação Celular/fisiologia , Cerebelo/metabolismo , Degeneração Neural/metabolismo , Fatores de Transcrição SOX/biossíntese , Fatores Etários , Animais , Cerebelo/citologia , Cerebelo/patologia , Galinhas , Camundongos , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/patologia , Primatas , Fatores de Transcrição SOX/genética , Especificidade da Espécie
15.
Gene ; 809: 146001, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34637898

RESUMO

The function of the Agtpbp1 gene has mainly been delineated by studying Agtpbp1pcd (pcd) mutant mice, characterized by losses in cerebellar Purkinje and granule cells along with degeneration of retinal photoreceptors, mitral cells of the olfactory bulb, thalamic neurons, and alpha-motoneurons. As a result of cerebellar degeneration, cerebellar GABA and glutamate concentrations in Agtpbp1pcd mutants decreased while monoamine concentrations increased. The salient behavioral phenotypes include cerebellar ataxia, a loss in motor coordination, and cognitive deficits. Similar neuropathogical and behavioral profiles have been described in childhood-onset human subjects with biallelic variants of AGTPBP1, including cerebellar ataxia and hypotonia.


Assuntos
Cerebelo/fisiologia , Proteínas de Ligação ao GTP/genética , Doenças Neurodegenerativas/patologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , Animais , Cerebelo/citologia , Cricetinae , Proteínas de Ligação ao GTP/metabolismo , Humanos , Camundongos Mutantes , Doenças Neurodegenerativas/genética , Células de Purkinje/patologia , Células de Purkinje/fisiologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Ovinos
16.
Ultrasonics ; 119: 106601, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34624581

RESUMO

Herein, we propose a method to estimate the reflection coefficient of the ultrasonic wave transmitted onto an object and to display this with acoustic impedance distribution. The observation targets were glial cells, which have a rigid cytoskeleton and spread out well on a culture substrate. A reflection coefficient derived only from the cells was then obtained using a deconvolution process. In the conventional method, the deconvolution process that was performed only in the frequency domain would cause an error in the reconstructed signal, and it formed an artifact when the result was converted into the acoustic impedance image. To solve this problem, two types of deconvolution techniques were applied in either the full frequency or time-frequency domain. The results of both methods were then compared. Since the characteristic acoustic impedance is a physical property substantially equivalent to the bulk modulus, it can be considered that the internal elastic parameter is thus estimated. An analysis of the nucleus based on its position in the acoustic impedance image was then performed. The results indicated that the proposed time-frequency domain deconvolution method is able to maintain the structure of the cell, while the cell itself is free from unwanted artifacts. The nucleus was also estimated to be located toward the center of the cell, with lower acoustic impedance value than the cytoskeleton. The results of this study could contribute to establishing a method for monitoring the internal condition of cultured cells in regenerative medicine and drug discovery.


Assuntos
Microscopia Acústica/métodos , Neuroglia/ultraestrutura , Animais , Células Cultivadas , Cerebelo/citologia , Análise dos Mínimos Quadrados , Ratos , Transdutores
17.
Cell Rep ; 37(11): 110116, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34910904

RESUMO

The brain selectively allocates attention from a continuous stream of sensory input. This process is typically attributed to computations in distinct regions of the forebrain and midbrain. Here, we explore whether cerebellar Purkinje cells encode information about the selection of sensory inputs and could thereby contribute to non-motor forms of learning. We show that complex spikes of individual Purkinje cells change the sensory modality they encode to reflect changes in the perceived salience of sensory input. Comparisons with mouse models deficient in cerebellar plasticity suggest that changes in complex spike activity instruct potentiation of Purkinje cells simple spike firing, which is required for efficient learning. Our findings suggest that during learning, climbing fibers do not directly guide motor output, but rather contribute to a general readiness to act via changes in simple spike activity, thereby bridging the sequence from non-motor to motor functions.


Assuntos
Potenciais de Ação , Adaptação Fisiológica , Cerebelo/fisiologia , Comportamento de Escolha , Discriminação Psicológica , Atividade Motora , Células de Purkinje/fisiologia , Animais , Cerebelo/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células de Purkinje/citologia , Vibrissas
18.
Nature ; 600(7888): 269-273, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34789878

RESUMO

The brain is the seat of body weight homeostasis. However, our inability to control the increasing prevalence of obesity highlights a need to look beyond canonical feeding pathways to broaden our understanding of body weight control1-3. Here we used a reverse-translational approach to identify and anatomically, molecularly and functionally characterize a neural ensemble that promotes satiation. Unbiased, task-based functional magnetic resonance imaging revealed marked differences in cerebellar responses to food in people with a genetic disorder characterized by insatiable appetite. Transcriptomic analyses in mice revealed molecularly and topographically -distinct neurons in the anterior deep cerebellar nuclei (aDCN) that are activated by feeding or nutrient infusion in the gut. Selective activation of aDCN neurons substantially decreased food intake by reducing meal size without compensatory changes to metabolic rate. We found that aDCN activity terminates food intake by increasing striatal dopamine levels and attenuating the phasic dopamine response to subsequent food consumption. Our study defines a conserved satiation centre that may represent a novel therapeutic target for the management of excessive eating, and underscores the utility of a 'bedside-to-bench' approach for the identification of neural circuits that influence behaviour.


Assuntos
Manutenção do Peso Corporal/genética , Manutenção do Peso Corporal/fisiologia , Cerebelo/fisiologia , Alimentos , Biossíntese de Proteínas , Genética Reversa , Resposta de Saciedade/fisiologia , Adulto , Animais , Regulação do Apetite/genética , Regulação do Apetite/fisiologia , Núcleos Cerebelares/citologia , Núcleos Cerebelares/fisiologia , Cerebelo/citologia , Sinais (Psicologia) , Dopamina/metabolismo , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Feminino , Homeostase , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neostriado/metabolismo , Neurônios/fisiologia , Obesidade/genética , Filosofia , Adulto Jovem
19.
Cell Rep ; 37(6): 109966, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758322

RESUMO

Sensory processing is essential for motor control. Climbing fibers from the inferior olive transmit sensory signals to Purkinje cells, but how the signals are represented in the cerebellar cortex remains elusive. To examine the olivocerebellar organization of the mouse brain, we perform quantitative Ca2+ imaging to measure complex spikes (CSs) evoked by climbing fiber inputs over the entire dorsal surface of the cerebellum simultaneously. The surface is divided into approximately 200 segments, each composed of ∼100 Purkinje cells that fire CSs synchronously. Our in vivo imaging reveals that, although stimulation of four limb muscles individually elicits similar global CS responses across nearly all segments, the timing and location of a stimulus are derived by Bayesian inference from coordinated activation and inactivation of multiple segments on a single trial basis. We propose that the cerebellum performs segment-based, distributed-population coding that represents the conditional probability of sensory events.


Assuntos
Potenciais de Ação , Cálcio/metabolismo , Cerebelo/fisiologia , Rede Nervosa/fisiologia , Núcleo Olivar/fisiologia , Células de Purkinje/fisiologia , Órgãos dos Sentidos/fisiologia , Animais , Teorema de Bayes , Cerebelo/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos ICR , Rede Nervosa/citologia , Núcleo Olivar/citologia , Células de Purkinje/citologia , Órgãos dos Sentidos/citologia
20.
Nat Commun ; 12(1): 6694, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795244

RESUMO

Animals must adapt their behavior to survive in a changing environment. Behavioral adaptations can be evoked by two mechanisms: feedback control and internal-model-based control. Feedback controllers can maintain the sensory state of the animal at a desired level under different environmental conditions. In contrast, internal models learn the relationship between the motor output and its sensory consequences and can be used to recalibrate behaviors. Here, we present multiple unpredictable perturbations in visual feedback to larval zebrafish performing the optomotor response and show that they react to these perturbations through a feedback control mechanism. In contrast, if a perturbation is long-lasting, fish adapt their behavior by updating a cerebellum-dependent internal model. We use modelling and functional imaging to show that the neuronal requirements for these mechanisms are met in the larval zebrafish brain. Our results illustrate the role of the cerebellum in encoding internal models and how these can calibrate neuronal circuits involved in reactive behaviors depending on the interactions between animal and environment.


Assuntos
Cerebelo/fisiologia , Retroalimentação Fisiológica/fisiologia , Retroalimentação Sensorial/fisiologia , Peixe-Zebra/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Encéfalo/fisiologia , Cerebelo/citologia , Humanos , Larva/genética , Larva/fisiologia , Aprendizagem/fisiologia , Neurônios/fisiologia , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...